HopeRF RFM95 and arduino a low cost LoRaWan solution

The HopeRF RFM95w module proposes to access LoRa at low cost. Its unitary price is around 4€ on shop like aliexpress. A version with a shield is also existing. Its name is Lora1276-C1 from niceRF. These different transceivers are using Semtech SX1276 chip. It makes this kind of chip interesting for regional low cost LoRaWAN design in association with a MCU. Here we are going to use it with an Arduino platform.

Continue reading

STM32 and Arduino, working with a custom board

Arduino is supporting STM32 platform and after following the installation steps, you can easily work with the st-microelectronics development kit.

In the real life you need to create a specific setup once your prototype is transformed into a custom board. This setup redefines the pin mapping, the target MCU and needs to refine the firmware transfer method as you will use and external STLINK programmer.

In this post we are going to see the different step for doing this.

Continue reading

IoT, the tracking use-case

I want to start a new category of posts about IoT, not focus on the technology itself but on the use-cases. That said, for sure my words will be on the technological aspects of this use-case. The objective is to let you understand what are the solution but also what are the challenges behind that use-case. To start I’ve selected the Tracking use-case, reviewing all the GPS, WiFi and operator technics.

Regarding my experience in IoT from the past 5 years, one of the biggest market for LPWAn is actually assets tracking. In number I assume alarm backup is a little bit behind but thanks to one uniq actor. Tracking is far away first regarding the number of actors already having implemented a solution in production. This is also where we find the largest number of objects on the market for a single use-case.

That’s why I decided to start with this use case. I also know it really well for being the founder of one of these solution : Foxtrackr and I’ve already implemented all the technics described below.

Continue reading

Do I need to implement a private LPWan network ?

Recurrent question where I usually see the wrong option taken by industrials: do I need to implement my own private network for m LPWA network ? In many case the wrong choice has been made due to a lack of understanding of network total cost of ownership. For sure I heard element about MY DATA privacy, but honestly, all the companies are putting added value data into the Cloud, so don’t tell me you unknown machine temperature is a sensitive data ?!? That said, let’s back to the true question : when does it make sense to create your own private network ?

Continue reading

Introduction to Arduino MKRFox1200 – Part 2

Following the previous post where we saw how to transmit data on Sigfox with an Arduino MKRFox1200, in the second part we will learn how to consume these data in a backend site. To make this simple we are going to implement a solution using Adafruit.io service. This service allows to create graphics from data received from an API. We will configure Sigfox backend to push device data to this API.

Continue reading

Introduction to Arduino MKRFox1200 – Part 1

Arduino MkrFox1200 sounds like Arduino for Maker using Sigfox. This board is an official Arduino product, looking like Arduino Nano series (but not pin-compatible, longer and larger)

It is composed of a SAM D21E MCU (Microchip ARM Cortex M0) operating at 48MHz. It includes 256K flash memory and 32K of SRAM. We can consider this as an Arduino under steroid.

The Sigfox radio layer is composed by an ATA8520. This is a Microchip Sigfox module based on AVR MCU. This module is communicating with the SAM D21E module with a SPI bus. The radio module is supporting RCZ1 zone (Europe).

This board can be found in many eShop places for a price around 45€ including an antenna and 2 year of Sigfox network access.

In this Post we will see how to get started with this board and how start programming with it.

Continue reading

Kerlink LoRaWan Wirnet iFemtoCell review

LPWA networks needs antennas and gateway to receive the device communication and transfer them to a network kernel. You can take a look to my post on the LPWA network architecture for more details.

In the LoRaWan ecosystem we call the first part of this network architecture a gateway. There are different kind of gateway : The network operator gateway with a big and efficient antenna, capable to support external weather like the Kerlink IoT Station and some low costs solution you can deploy at home or within a building (indoor) to cover a local device fleet.

The Kerlink Wirenet iFemtoCell device is a such type of gateway. this post will review how to get start with it and what we can expect in term of coverage.

Continue reading

The impact of putting an antenna in a box

IoT design a usually a matter of antenna as already seen in different previous blog post. Antenna performance is the assurance of your capacity to deploy your object in larger zone and a way to save energy by reducing transmission power.

As we will see, if you get a hardware component and simply put it in a box its radio behavior will be totally different as the box is impacting the transmission.

This post will practically show you the impact of a box on a device radio quality.

Continue reading